Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences
نویسندگان
چکیده
We design nonstandard finite difference (NSFD) schemes which are unconditionally dynamically consistent with respect to the positivity property of solutions of cross-diffusion equations in biosciences. This settles a problem that was open for quite some time. The study is done in the setting of three concrete and highly relevant cross-diffusion systems regarding tumor growth, convective predator-prey pursuit and evasion model and reaction-diffusion-chemotaxis model. It is shown that NSFD schemes used for classical reaction-diffusion equations, such as the Fisher equation, for which the solutions enjoy the positivity property, are not appropriate for cross-diffusion systems. The reliable NSFD schemes are therefore obtained by considering a suitable implementation on the cross-diffusive term of Mickens’ rule of nonlocal approximation of nonlinear terms, apart from his rule of complex denominator function of discrete derivatives. We provide numerical experiments that support the theory as well as the power of the NSFD schemes over the standard ones. In the case of the cancer growth model, we demonstrate computationally that our NSFD schemes replicate the property of traveling wave solutions of developing shocks observed in [14]. AMS Subject Classification (2010): 65L12; 65L99; 65M06; 65M99; 92D30.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملAn efficient nonstandard numerical method with positivity preserving property
Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...
متن کاملA family of positive nonstandard numerical methods with application to Black-Scholes equation
Nonstandard finite difference schemes for the Black-Scholes partial differential equation preserving the positivity property are proposed. Computationally simple schemes are derived by using a nonlocal approximation in the reaction term of the Black-Scholes equation. Unlike the standard methods, the solutions of new proposed schemes are positive and free of the spurious oscillations.
متن کاملPositivity Preserving Nonstandard Finite Difference Schemes Applied to Cancer Growth Model
When one solves differential equations, modeling biological or physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. In this work, we introduce explicit finite difference schemes based on the nonstandard discretization method to a...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 68 شماره
صفحات -
تاریخ انتشار 2014